Direct upload and download
Get Endpoint via Float16
This tutorial guides you through upload and download using Float16's storage.
Step 1 : Create and start the project
float16 project create --instance h100
float16 project start
Step 2 : Prepare the script
https://github.com/float16-cloud/examples/tree/main/official/spot/torch-train-and-infernce-mnist
(download-mnist-datasets.py)
import os
from torchvision import datasets, transforms
def download_mnist(data_path):
if not os.path.exists(data_path):
os.makedirs(data_path)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# Download training data
train_dataset = datasets.MNIST(root=data_path, train=True, download=True, transform=transform)
# Download test data
test_dataset = datasets.MNIST(root=data_path, train=False, download=True, transform=transform)
print(f"MNIST dataset downloaded and saved to {data_path}")
if __name__ == "__main__":
data_path = "../mnist-datasets" # You can change this to your preferred location
download_mnist(data_path)
Step 3.1 : Upload via CLI
After downloaded. Use this command to upload datasets directory to remote path.
float16 storage upload -f ./mnist-datasets -d datasets
Step 3.2 : Upload via Website
Step 4.1 : Download the file(s) via CLI
float16 storage download -f datasets -d ./local_datasets
Step 4.2 : Download the file(s) via Website
Congratulations! You've successfully use your first server mode on Float16's serverless GPU platform.
Explore More
Learn how to use Float16 CLI for various use cases in our tutorials.
Happy coding with Float16 Serverless GPU!
Last updated